Lesson#2
Toolkit for Exercise 10.4
1) 2 sinα cosβ=sin(α+β)+sin(α−β)
2) 2 cosα sinβ=sin(α+β)−sin(α−β)
3) 2 cosα cosβ=cos(α+β)+cos(α−β)
4) −2 sinα sinβ=cos(α+β)−cos(α−β)
5) sinP+sinQ=2 sin((P+Q)/2)cos((P−Q)/2)
6) sinP−sinQ=2 cos((P+Q)/2)sin((P−Q)/2)
7) cosP+cosQ=2 cos((P+Q)/2)cos((P−Q)/2)
8) cosP−cosQ=−2 sin((P+Q)/2)sin((P−Q)/2)
And all the trigonometric knowledge of previous exercises . . .
Question No . 1
Q1:Express the following as sums or differences:
(i): 2sin3θ cosθ
(ii): 2cos5θ sinθ
(iii): sin5θ cos2θ
(iv): 2sin7θ sin2θ
(v): cos(+)sin(−)
(vi): cos(2+30°)cos(2−30°)
(vii): sin12° cos46°
(viii): sin(+45°)sin(−45°)
Q1:Express the following as sums or differences:
(iv): 2sin7θ sin2θ
(v): cos(+)sin(−)
(viii): sin(+45°)sin(−45°)
and Mathematics part 1 Example # 1(page #334).
Solve yourself . . . . .
Trigonometric Identities
Chapter No 10
Exercise No 10.4
Mathematics
part 1
Toolkit for Exercise 10.4
1) 2 sinα cosβ=sin(α+β)+sin(α−β)
2) 2 cosα sinβ=sin(α+β)−sin(α−β)
3) 2 cosα cosβ=cos(α+β)+cos(α−β)
4) −2 sinα sinβ=cos(α+β)−cos(α−β)
5) sinP+sinQ=2 sin((P+Q)/2)cos((P−Q)/2)
6) sinP−sinQ=2 cos((P+Q)/2)sin((P−Q)/2)
7) cosP+cosQ=2 cos((P+Q)/2)cos((P−Q)/2)
8) cosP−cosQ=−2 sin((P+Q)/2)sin((P−Q)/2)
And all the trigonometric knowledge of previous exercises . . .
Question No . 1
Q1:Express the following as sums or differences:
(i): 2sin3θ cosθ
(ii): 2cos5θ sinθ
(iii): sin5θ cos2θ
(iv): 2sin7θ sin2θ
(v): cos(+)sin(−)
(vi): cos(2+30°)cos(2−30°)
(vii): sin12° cos46°
(viii): sin(+45°)sin(−45°)
Q1:Express the following as sums or differences:
(iv): 2sin7θ sin2θ
(v): cos(+)sin(−)
(viii): sin(+45°)sin(−45°)
and Mathematics part 1 Example # 1(page #334).
Solve yourself . . . . .
Trigonometric Identities
Chapter No 10
Exercise No 10.4
Mathematics
part 1
Category
📚
Learning