After witnessing the array of Northern Lights as far south as Colorado, we discuss how Coronal Mass Ejections (CME) are formed and what impact they have on Earth.
Category
🤖
TechTranscript
00:00there are some beautiful auroras happening in the northwest of America right now.
00:04Yeah so like NOAA scientists have given this a really really simple explanation and it's it's
00:10called like a cannibal coronal mass ejection that's the that's the thing that's causing all
00:16of these auroras going on right now. Cannibal corona mass ejection. Yeah that sounds a little
00:23terrifying. I mean it's it's kind of funny right because like just soon as we get over one kind of
00:27corona we get hit by another but like this this one like a cannibal coronal mass ejection like if
00:32I break that down for you it's caused by sunspots. So there's a sunspot on the sun called like AR2975
00:40right now. Okay. And what it's been doing over the last say like few days is producing up to 17
00:46solar eruptions two of which were have headed straight towards us. Now one of them was traveling
00:54faster than the other. It was the one just like that came just after the first one that was emitted.
01:01Now when those when that second sun like the coronal mass ejection caught up with the first
01:08it cannibalized it. It swept it all up into this one big wave of like these these charged particles
01:14and then they all swept towards the earth and then when they hit it they caused a geomagnetic
01:19storm. Where they come from in how sunspots are created is magnetic fields are created on the sun
01:26like the sun is just a giant ball of plasma so like there's loads of charged particles eddying
01:32and moving around on like inside the sun across the sun's surface. Now when you have charged particles
01:37moving you're going to induce some magnetism there but because magnetic field lines can't cross and
01:42you've got all these moving particles like this giant traffic jam of particles moving everywhere
01:47you'll inevitably get these field lines bunched up next to each other. They'll form into these
01:51tight knots that can't escape anywhere else and eventually they will have to snap and release
01:57energy. Now they release energy either in the form of a solar flare like a bright flare of radiation
02:03or they'll release energy in the form of like chucking out some of that plasma from the sun.
02:07What's the difference between solar flares and ronald mass ejections? So solar flares is just
02:13the bright flash that you'll see of radiation from that from that field line snapping that
02:18energy release. A coronal mass ejection is some of the sun's like plasma soup actually being like
02:24burped out of the sun. I love that phrase plasma soup. I mean pretty but I mean a little terrifying
02:36right? I mean does it affect earth? So it does but not in like a so not in an always really
02:46terrible way. Most of the time the earth has a pretty strong magnetic field which is really
02:51really good news for us because it protects us from all of these like highly energized particles
02:56that the sun has just spewed out at us. In this case at like speeds of like 2 million miles per
03:02hour which is just I guess 33 times less than the speed of light. Pretty quick. So what the
03:09earth's magnetic field will do is it will absorb all of these particles. The energy will go into
03:15stretching out the magnetic field in space so it's like it's kind of bunched out towards the
03:21it gives it a long tail and then most of those particles will gather kind of towards the poles
03:29where they will like go downwards and then energize some of the molecules in the atmosphere.
03:36And when these when these molecules in the atmosphere then give out light in order to
03:41kind of go down to a lower energy level that's what why we see the aurora. Now because there's
03:47so many of these like particles coming in you're getting auroras much lower down along the northern
03:54hemisphere than you know would normally expect to see. That's that's that's that's a pretty that's
04:00a nice effect there. And I know that people had already taken video from it. This is from
04:08Manitoba in Canada. Beautiful. Just absolutely beautiful. Yeah yeah yeah and like I think also
04:16you could see the aurora in the U.S. certainly like as far south as Pennsylvania, Iowa and Oregon over
04:21the last few days as well. Oh right on spaceweather.com that you guys were sharing information
04:28from they showed some pictures purple. I mean purple what a what an aura that earth is giving
04:35off of this aurora. And you know I when you mentioned poles I'm like that's why they're
04:42always up there towards. Yeah. We got to get closer to some poles Ben. Yeah yeah. But so okay so that's
04:48the good. What how about damage? Okay yes so damage. So they can cause damage. So one of the
05:00most recent kind of power outages that was caused by a storm of this type was in the was the 1989
05:07Quebec power cut which was caused by a geomagnetic storm. Now most of the time especially when it
05:13comes to people who provide like power lines and stuff a lot of them have shielded like their
05:18their their like power cables and things like that with a kind of faraday cage basically which
05:23diverts the energy or they also have like other techniques that allow them to kind of siphon off
05:29excess energy that might be given to power lines by storms like this. Okay. But like that hasn't
05:34always been the case like especially back in 1859 there was a really big event called the Great
05:40Carrington Event which was the largest sort of solar storm in modern human history. I'm sure there
05:46have been solar storms just as large throughout our past but like before that point we weren't
05:52really documenting it and we didn't have many electronics around so we didn't really care.
05:57But in this case the Great Carrington Event fried most of the telegram systems in the US and in
06:04Europe that had been developed at the time and it also led to auroras that could be seen around
06:10like as far south as the Caribbean and like there were people waking up at night thinking that
06:17like thinking that it was daytime in the Caribbean because of these enormous auroras from this event.
06:23I mean we're freaked out about it now when we see things like that we know more but I can't
06:27even imagine you know over 100 years ago. Yeah exactly. In terms of more modern sort of
06:34phenomena that have caused more modern damage other than the Quebec event, recently actually
06:40there was another geomagnetic storm that caused the downing of 40 of SpaceX's
06:46Starlink satellites. That was one thing that happened and on top of that as well there's a
06:52potential risk that internet like the internet in general especially in the United States
06:59could be cut out by a geomagnetic storm because a lot of these cables run underwater through like
07:06like latitudes that would be affected by it and like you would have a geomagnetic storm they're
07:12not shielded so they would basically be probably quite severely affected by this. But as is the
07:17case with a lot of things and how they're done with like legislation it's like earthquakes it
07:23doesn't often get legislated for until the worst has already happened. Yeah that's a shame I mean
07:28I really like the internet I really I like to keep it around this is how we get to communicate right.
07:34But you're saying that we have protections now. So most I think most like power
07:42companies have already built in protections into their grids for these kind of things
07:46it's just yeah you're not going to be getting any like I guess coronal mass ejection memes in the
07:52middle of a coronal mass ejection you have to wait a few weeks for them to fix this to power
07:55the underwater cables. Yeah and and luckily Earth you know we have this nice electromagnetic shield
08:02right already built in otherwise we'd be you know goners you know. Yeah it would fry us and it would
08:06also fry our atmosphere like a big reason why Mars doesn't have much of an atmosphere for instance
08:11it doesn't really have a very active magnetic field so all of those all of the atmosphere when
08:17when it gets hit by this these wave of like hydrogen like particles protons like the
08:23atmosphere gets stripped away quite quickly. Poor Mars, poor Mars. Yeah but that's why we're here
08:29right we're not we're not I mean we are on Mars but you know not yet not yet not yet. Well so
08:36is there a way to know when things like this will happen I know we watch the sun we have video of
08:41the sun it seems more like after the fact. Yeah so you get a bit of advanced warning like for instance
08:49the Great Carrington event is named after Richard Carrington who spotted like intense solar flares
08:55in the sky like a few like a few hours like maybe about 15 hours before the actual like event hit
09:02but the sun is quite a complex object like there's loads going on in those magnetic fields
09:08it's still really really hard for scientists to predict what's going on there. Yeah if only if
09:13well until until the next major astronomical event thanks so much Ben. Thank you.