Catégorie
📚
ÉducationTranscription
00:00Allez, on passe à la correction de l'exercice 2.
00:02Donc on vous demande que représente graphiquement un nombre dérivé ?
00:06Choisir la bonne réponse.
00:08Alors...
00:10Comment, déjà, vous dites, lorsque je vous demande un exercice, comment on fait pour lire f' de 2 ?
00:15Lorsqu'on a une courbe.
00:16Donc vous savez très bien, hop,
00:18on a un repère orthonormé, je sais pas, hop, tac, on a une fonction quelconque.
00:23Si je veux f' de 2, qu'est-ce que vous faites ? On se met au point d'abscisse 2,
00:28on monte jusqu'à la courbe,
00:30et là,
00:32il y a une droite qui passe.
00:34Cette droite, ça s'appelle la tangente, à la courbe.
00:37Et qu'est-ce que l'on fait pour lire f' de 2 ?
00:40Ben on regarde le coefficient directeur de la tangente.
00:44Par exemple, la tangente, on avance de 1 unité en abscisse,
00:46et on regarde combien on monte ou on descend pour rejoindre la tangente.
00:49Donc en fait, le nombre dérivé,
00:51c'est le coefficient directeur de la tangente.
00:56Donc attention,
00:58que représente un nombre dérivé ?
01:00Un nombre dérivé, c'est le coefficient directeur de la tangente.
01:03Un nombre dérivé, c'est pas une tangente.
01:05La tangente, c'est la tangente, c'est la droite.
01:07Donc attention, un nombre dérivé,
01:09c'est le coefficient directeur de la tangente.
01:13Ensuite, question 2.
01:15Soit f une fonction telle que f de 4 égale 2,
01:17et f' de 4 égale 5.
01:19Donnez l'équation réduite de la tangente SF,
01:21passant par le point A d'abscisse 4.
01:23Donc concrètement,
01:25on a une fonction,
01:27quelconque encore,
01:29on veut l'équation de la tangente au point d'abscisse 4,
01:31on se met en 4, on monte jusqu'à la courbe,
01:33et là, il y a une tangente qui est tracée.
01:35Donc nous, ce que l'on veut,
01:37c'est l'équation réduite de la tangente.
01:39On sait qu'une tangente, c'est une droite,
01:41donc à la fin, on doit trouver un résultat de la forme y égale mx plus p.
01:43Parce qu'on veut l'équation de cette tangente.
01:45Donc là, on applique la propriété du cours,
01:47vu qu'on veut l'équation de la tangente au point d'abscisse 4,
01:50vous remplacez tous les petits a par 4
01:52dans la propriété du cours.
01:54Donc c'est y égale,
01:56attention, on peut oublier, c'est une équation de droite,
01:58donc l'ordonnée égale f prime de 4,
02:00vu que c'est au point d'abscisse 4,
02:02fois x moins 4,
02:05plus f de 4.
02:10Ce qui donne y égale 5,
02:13fois x moins 4,
02:15plus 2.
02:18On effectue la somme distributivité,
02:215 fois x, 5x,
02:235 fois moins 4, moins 20,
02:25plus 2,
02:27là j'ai effectué la somme distributivité,
02:29et on trouve y égale 5x,
02:31moins 18.
02:33Et donc le jour du bac,
02:35encore une fois, on peut vous demander
02:37de tracer cette tangente, cette droite.
02:39Donc comme tout à l'heure,
02:41comment on effectue pour tracer cette droite,
02:43là c'était pas demandé,
02:45je suis d'accord, la question c'était pas demandé,
02:47mais je vous répète, au bac on peut vous dire
02:49comment on trace cette droite.
02:51Donc on regarde la valeur du coefficient directeur m vaut 5,
02:53la valeur de p,
02:55l'ordonnée à l'origine, attention, c'est moins 18.
02:57Donc vous savez que comme p vaut moins 18,
02:59l'ordonnée à l'origine vaut moins 18 ici,
03:03et comme le coefficient directeur vaut 5,
03:05vous savez que lorsque vous allez avancer d'une internape 6,
03:07en ordonnée, vous allez monter de 5 unités.
03:11Et hop,
03:13on trace
03:15cette tangente, cette droite.
03:17Voilà, si on vous demande de la tracer,
03:19on utilise la valeur de p
03:21et du coefficient directeur.
03:23Question 3,
03:25soit D la droite passant par les points A et B,
03:27déterminez la valeur du coefficient directeur de droite D,
03:29donc cette propriété elle vous sera
03:31extrêmement utile en physique chimie.
03:33Donc lorsqu'on a une droite, comment calculer
03:35la valeur d'un coefficient directeur ?
03:37On a vu graphiquement comment on lisait un coefficient directeur,
03:39lorsque j'avance une unité, de combien je monte,
03:41de combien je descends, et pour le calculer,
03:43quand ça passe par deux points A et B,
03:45il faut connaître la propriété, c'est différentes les ordonnées,
03:47donc YB moins YA
03:49divisé par l'abscisse de B
03:51moins l'abscisse de A.
03:53Ce qui donne l'ordonnée du point B,
03:55c'est 1, attention abscisse,
03:57ordonnée en deuxième, moins
03:59l'ordonnée de A, c'est moins 3,
04:01donc 1 moins le moins 3,
04:03divisé par l'abscisse de B,
04:05moins 4, moins
04:07l'abscisse de A, 2.
04:09Donc ça donne 1 plus 3
04:11sur moins 4, moins 2, moins 6,
04:13ce qui donne 4 sur moins 6,
04:15et cette fraction-là,
04:17on peut la réduire,
04:19on divise par 2 en haut en bas, ce qui donne moins 2 tiers.
04:21Attention, c'est la valeur exacte.
04:23Lorsqu'on divise par 3,
04:25ça ne donne jamais une valeur exacte, attention.
04:27Voilà pour la correction
04:29de l'exercice 2.